//Train along an inclined plane //refer fig. 15.14 and 15.15 u=0 v=(36*1000)/(60*60) //m/sec^2 s=1000 //m //From kinematic equation a=100/2000 //m/sec^2 //Tractive resistance (Tr) Tr=5*1500 //N //Component of weight of train (Wt1) Wt=1500/100 //kN //Inertia force (I1) I=(1500*0.05)/(9.81) //kN (Down the plane) //Dynamic equilibrium equation gives T=7.5+15+7.645 //kN //Consider dynamic equilibrium of train //Total tractive resistance (Rt) Rt=5*2000 //N //Inertia force (I2) I2=(2000*0.05)/(9.81) //kN (Down the plane) //Component of weight down the plane (Wt2) Wt2=(2000)/(100) //kN //Dynamic equilibrium equation gives P=10+10.194+20 //kN printf("\nT=%.3f kN\nP=%.3f kN",T,P)