//Bullet fired //refer fig. 13.13 //velocity of projection u=(360*1000)/(60*60) //m/sec //(a) total time of flight //method 1 y0=-120 //m //considering vertical motion and solving quadratic equation t=12.20 //sec //method 2 //t1=(100*sind(30))/(9.81) //sec //maximum height reached in this time //h=((100^2)*(sind(30))^2)/(2*9.81) //m //during downward motion //t2=7.1 //sec //t=t1+t2 //sec //method 3 //time required to travel from A to D //t1=10.19 //sec //g=9.81 //m/sec^2 //distance travelled=120 m t=12.20 //sec //(b) Maximum height reached by the bullet //h=((100^2)*(sind(30))^2)/(2*9.81) m above point A h=127.42+120 //m above the ground //(c)Horizontal range Hrange=100*12.2*cosd(30) //m //(d)Velocity of the bullet just before striking the ground //vertical component of velocity=69.682 m/sec //horizontal component of velocity=86.603 m/sec //velocity at strike v=sqrt((69.682^2)+(86.603^2)) //m/sec theta=atand(69.682/86.603) //degree printf("\nt=%.2f sec\nh=%.2f m above the ground\nHorizontal range=%.2f m\nv=%.2f m/sec\ntheta=%.2f degree",t,h,Hrange,v,theta)