//soldier fires a bullet //refer fig 13.18 //equation of trajectory of bullet is known thus //For the point on ground where bullet strikes y=-50 //m x=100 //m u=31.32 //m/sec //alpha=0 or alpha=atand(2) //degree //when alpha =0 //Horizontal component of velocity vx=31.32 //m/sec //Vertical component of velocity vy=sqrt(2*9.81*50) //m/sec //Velocity of strike v=sqrt((31.32^2)+(31.32^2)) //m/sec theta=atand(1) //degree //when alpha=63.435 degree vx=14.007 m/sec //vy=42.02 m/sec bv=sqrt((14.007^2)+(42.02^2)) //m/sec btheta= atand(42.02/14.007) //degree to horizontal printf("\nalpha=%.2f degree\nv=%.2f m/sec\ntheta=%.2f degree\nv=%.2f m/sec\ntheta=%.2f degree to horizontal",alpha,v,theta,bv,btheta)