//Book - Power System: Analysis & Design 5th Edition //Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye //Chapter - 7 ; Example 7.2 //Scilab Version - 6.0.0 ; OS - Windows clc; clear; Srated = 500; //apparent power in MVA Vrated = 20; //rated voltage in kV frated = 60; //fated frequency in Hz Xd2 = 0.15; //synchoronous reactances per unit Xd1 = 0.24; //synchoronous reactances per unit Xd = 1.1; //synchoronous reactances per unit Td2 = 0.035; //time constants in seconds Td1 = 2.0; //time constants in seconds Td = 0.20; //time constants in seconds t = 3; //no. of cycles Eg = 1.05; //no load voltage in per unit I2u = Eg/Xd2; //sub transient fault current in per unit Ibase = Srated/(sqrt(3)*20); //base current in kA I2 = I2u*Ibase; //rms subtransient fault current in kA Iac = Eg*((((1/Xd2)-(1/Xd1))*exp(-0.05/Td2))+(((1/Xd1)-(1/Xd))*exp(-0.05/Td1))+(1/Xd)); //rms ac fault current in per unit Iac=Iac*Ibase; //rms ac fault current in kA Irms = sqrt((Iac^2)+((sqrt(2)*I2*exp(-0.05/Td))^2)); //rms asymmetrical fault current in kA printf('\n Sub transient fault current in per unit I2 = %f kA',I2u); printf('\n Sub transient fault current in kA I2 = %f kA',I2); printf('\n The rms asymmetrical fault current Irms = %f kA',Irms);