clear // // //Initilization of Variables //strains e_A=500 //microns e_B=250 //microns e_C=-150 //microns E=2*10**5 //N/mm**2 //Modulus of Elasticity mu=0.3 //Poissons ratio theta=45 //Degrees //Calculations e_x=500 e_A=500 e_45=250 e_B=250 e_y=-150 e_C=-150 //e_45=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(2*theta)+rho_x_y*2**-1*sin(2*theta) //After sub values and further simplifying we get rho_x_y=(e_45-(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*cos(2*theta*%pi*180**-1))*(sin(2*theta*%pi*180**-1))**-1*2 //Principal strains are given by e1=(e_x+e_y)*2**-1+(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns e2=(e_x+e_y)*2**-1-(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns //Principal Stresses sigma1=E*(e1+mu*e2)*(1-mu**2)**-1*10**-6 //N/mm**2 sigma2=E*(e2+mu*e1)*(1-mu**2)**-1*10**-6 //N/mm**2 //Result printf("\n Principal Strains are:e1 %0.2f N/mm**2",e1) printf("\n :e2 %0.2f N/mm**2",e2) printf("\n Principal Stresses are:sigma1 %0.2f N/mm**2",sigma1) printf("\n :sigma2 %0.2f N/mm**2",sigma2)