clear // // //Initilization of Variables L_ED=2 //m //Length of DB & AC L_AC=2 L_DB=2 L_CD=4 //m //Length of CD L_CE=2 //m //Length of CE F_A=40 //KN //Force at C F_B=20 //KN //Force at A E=200*10**6 //KN/mm**2 //Modulus of Elasticity I=50*10**-6 //m**4 //M.I //Calculations //LEt V_C & V_D be the reactions at C & D respectively //V_C+V_D=60 //Taking Moment At D,M_D V_C=-(-F_A*(L_AC+L_CE+L_ED)+F_B*L_DB)*L_CD**-1 V_D=60-V_C //Now Taking Moment at Distance x from A, //M_x=-40*x+50*(x-2)+10*(x-6) //EI*(d**2*y/dx**2)=-40*x+50*(x-2)+10*(x-6) //Now Integrating above Equation we get //EI*(dy/dx)=C1+20*x**2-25*(x-2)+5*(x-6)**2 //Again Integrating above Equation we get //EI*y=C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3 //At x=0 y=0 //C2+2*C1=-53.33 ...............(1) //At x=6 y=0 //C2+6*C1=906.667 ...............(2) //Subtracting Equation 1 from 2 we get C1=853.333*4**-1 C2=53.333-2*C1 x=0 y_A=(C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3)*(E*I)**-1 //Answer For y_A is incorrect in textbook //At Mid-span C1=853.333*4**-1 C2=53.333-2*C1 x=4 y_E=(C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3)*(E*I)**-1 //Answer For y_E is incorrect in textbook //At B C1=853.333*4**-1 C2=53.333-2*C1 x=8 y_B=(C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3)*(E*I)**-1 //Result printf("\n Deflection relative to the level of the supports:at End A %0.4f mm",y_A) printf("\n :at End B %0.4f mm",y_B) printf("\n :at Centre of CD %0.4f mm",y_E)