clear // // //Initilization of Variables L_CB=2 //m //Length of CB L_AC=4 //m //Length of AB M_C=15 //KN.m //Moment At Pt C F_C=30 //KN L=6 //m Span of Beam //Let X=E*I X=10000 //KN-m**2 //Calculations //Let V_A and V_B be the reactions at A & B respectively //V_A+V_B=30 //Taking Moment a A,we get V_B=(F_C*L_AC+M_C)*L**-1 V_A=30-V_B //Now Taking Moment at distacnce x from A //M_x=7.5*x-30*(x-4)+15 //By using Macaulay's Method //EI*(d**2*x/dx**2)=M_x=7.5*x-30*(x-4)+15 //Now Integrating above Equation we get //EI*(dy/dx)=C1+7.5*x**2*2**-1-15*(x-4)**2+15*(x-4) ............(1) //Again Integrating above Equation we get //EIy=C2+C1*x+7.5*6**-1*x**3-5*(x-4)**3+15*(x-4)**2*2**-1..........(2) //Boundary Cinditions x=0 y=0 //Substituting above equations we get C2=0 x=6 //m y=0 C1=-(7.5*6**3*6**-1-5*2**3+15*2**2*2**-1)*6**-1 //EIy_c=C2+C1*x+7.5*6**-1*x**3-5*(x-4)**3+15*(x-4)**2*2**-1 //Sub values in Above equation we get y_c=(93.3333*(X)**-1) //Result printf("\n The Deflection at C %0.4f mm",y_c)