clear // // //Initilization of Variables b1=200 //mm //Width at base b2=100 //mm //Width at top L=8 //m Length P=500 //N //Load //Calculations //Consider a section at y metres from top //At this section diameter d is //d=b2+y*L**-1*(b1-b2) //After Further simplifying we get //d=b2+12.5*y //mm //Moment of Inertia //I=%pi*64**-1*d**4 //Section Modulus //Z=%pi*32**-1*(b1+12.5*y)**3 //Moment //M=5*10**5*y //N-mm //Let sigma be the fibre stress at this section then //M=sigma*Z //After sub values in above equation and further simplifying we get //sigma=5*10**5*32*%pi**-1*y*((b2+12.5*y)**3)**-1 //For sigma to be Max,d(sigma)*(dy)**-1=0 //16*10**6*%pi**-1*((b2+12.5*y)**-3+y*(-3)*(b2+12.5*y)**-4*12.5) //After Further simplifying we get //b2+12.5*y=37.5*y //After Further simplifying we get y=b2*25**-1 //m //Stress at this section sigma=5*10**5*32*%pi**-1*y*((b2+12.5*y)**3)**-1 //Result printf("\n Stress at Extreme Fibre is max %0.2f m",y) printf("\n Max stress is %0.2f N/mm**2",sigma)