clear // //Initilization of Variables b=60 //mm //width of bar d=30 //mm //depth of bar L=200 //mm //Length of bar A=30*60 //mm**2 //Area of bar A2=30*200 //mm**2 //Area of bar along which expansion is restrained P=180*10**3 //N //Compressive force E=2*10**5 //N/mm**2 //Youngs Modulus mu=0.3 //Poissons ratio //Calculations //The bar is restrained from expanding in Y direction P_z=0 P_x=P*A**-1 //stress developed in x direction //Now taking compressive strain as positive //e_x=P_x*E**-1-mu*P_y*E**-1 .......................(1) //e_y=-mu*P_x*E**-1+P_y*E**-1 ....................(2) //e_z=-mu*P_x*E**-1-mu*P_y*E**-1 ......................(3) //Part-1 //When it is fully restrained e_y=0 P_y=30 //N/mm**2 e_x=P_x*E**-1-mu*P_y*E**-1 e_z=-mu*P_x*E**-1-mu*P_y*E**-1 //Change in Length dell_l=e_x*L //mm //Change in width dell_b=b*e_y //change in Depth dell_d=d*e_z //Volume of bar V=b*d*L //mm**3 //Change in Volume e_v=(e_x+e_y+e_z)*V //mm**3 //Part-2 //When 50% is restrained //Free strain in Y direction e_y1=mu*P_x*E**-1 //As 50% is restrained,so e_y2=-50*100**-1*e_y1 //But form Equation 2 we have e_y=-mu*P_x*E**-1+P_y*E**-1 //After substituting values in above equation and furthe simplifying we get P_y=e_y2*E+d e_x2=P_x*E**-1-mu*P_y*E**-1 e_z2=-mu*P_x*E**-1-mu*P_y*E**-1 //Change in Length dell_l2=e_x2*L //mm //Change in width dell_b2=b*e_y2 //change in Depth dell_d2=d*e_z2 //Change in Volume e_v2=(e_x2+e_y2+e_z2)*V //mm**3 //REsult printf("\n Change in Dimension of bar is:dell_l %0.2f mm",dell_l) printf("\n :dell_b %0.4f mm",dell_b) printf("\n :dell_d %0.2f mm",dell_d) printf("\n Change in Volume is %0.2f mm**3",e_v) printf("\n Changes in material when only 50% of expansion can be reatrained:dell_l2mm",dell_l2) printf("\n :dell_b2 %0.4f mm",dell_b2) printf("\n :dell_d2 %0.2f mm",dell_d2)