clear // //To determine reactions, consider equilibrium equations //variable declaration //all Vertical loading are in KN PL1=200.0 PL2=200.0 PL3=150.0 PL4=100.0 PL5=100.0 //length in m UL1=6.0 UL2=8.0 UL3=9.0 UL4=UL2 UL5=UL1 L1=6.0 L2=6.0 L3=6.0 L4=6.0 L5=6.0 L6=6.0 //moment at point LO R2=(PL1*L1+PL2*(L1+L2)+PL3*(L1+L2+L3)+PL4*(L1+L2+L3+L4)+PL5*(L1+L2+L3+L4+L5))/(L1+L2+L3+L4+L5+L6) R1=PL1+PL2+PL3+PL4+PL5-R2 //Take the section (1)–(1) and consider the right hand side part. U3U4=sqrt((1**2)+(UL1**2)) theta1=asin(1/U3U4) L3U4=sqrt((UL1**2)+(UL2**2)) theta2=asin(6/L3U4) //moment at U4 FL3L4=(R2*(L5+L6)-PL4*L4)/UL4 printf("\n FL3L4= %0.1f KN (Tension)",FL3L4) //moment at L3 FU4U3=(-PL4*L4-PL5*(L4+L5)+R2*(L4+L5+L6))/(cos(theta1)*UL3) printf("\n FU4U3= %0.1f KN (Comp.)",FU4U3) //sum of horizontal forces FL4L3=FL3L4 FU4L3=(-FL4L3+FU4U3*cos(theta1))/sin(theta2) printf("\n FU4L3= %0.1f KN (Tension)",FU4L3)