clear // //Each load is 20 kN. //variable declaration P=20.0 AB=18.0 A=3.0 RA=P*7/2 RB=RA theta1=30.0*%pi/180 a=(3*A)/(4*cos(theta1)) //Take Section (A)–(A) and consider the equilibrium of left hand side part of the French Truss //Drop perpendicular CE on AB. CE=3*A*tan(theta1) DE=A theta=atan(CE/DE)*180/%pi printf("\n theta= %0.0f °",theta) //moment at point A F2=(P*a*cos(theta1)*6)/(A*2*sin(theta*%pi/180)) printf("\n F2= %0.4f KN (Tension)", F2) //sum of all vertical forces & sum of all horizotal forces is zero F1=(F2*sin(theta*%pi/180)+RA-P*3)/(sin(theta1)) printf("\n F1= %0.4f KN (Comp)",F1) F3=F1*cos(theta1)-F2*cos(theta*%pi/180) printf("\n F3= %0.4f KN (Tension)",F3)