// Example 8_5 clc;funcprot(0); // Given data V=1.00;// m^3 m=2.00;// kg T_1=20.0;// °C T_2=95.0;// °C T_b=100.0;// °C // Calculation // (a) v_1=V/m;// m^3/kg v_2=v_1;// m^3/kg // From Table C.1b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that // At 20.0°C v_f1=0.001002;// m^3/kg v_g1=57.79;// m^3/kg v_fg1=v_g1-v_f1;// m^3/kg u_f1=83.9;// kJ/kg u_g1=2402.9;// kJ/kg u_fg1=u_g1-u_f1;// kJ/kg // At 95.0°C v_f2=0.00104;// m^3/kg v_g2=1.982;// m^3/kg v_fg2=v_g2-v_f2;// m^3/kg u_f2=397.9;// kJ/kg u_g2=2500.6;// kJ/kg u_fg2=u_g2-u_f2;// kJ/kg x_1=(v_1-v_f1)/v_fg1;// The quality in the container when the contents are at 20.0°C x_1p=x_1*100;// % // (b) x_2=(v_2-v_f2)/v_fg2;// The quality in the container when the contents are at 95.0°C. x_2p=x_2*100;// % // (c) u_1=u_f1+(x_1*u_fg1);// kJ/kg u_2=u_f2+(x_2*u_fg2);// kJ/kg Q_12=m*(u_2-u_1);// kJ // (d) s_f1=0.2965;// kJ/kg.K s_fg1=8.3715;// kJ/kg.K s_f2=1.2503;// kJ/kg.K s_fg2=6.1664;// kJ/kg.K s_1=s_f1+((x_1)*s_fg1);// kJ/kg.K s_2=s_f2+((x_2)*s_fg2);// kJ/kg.K S_p_12=((m*(s_2-s_1))-(Q_12/(T_b+273.15)))*1000;// J/K T_b_minimum=Q_12/(m*(s_2-s_1));// K T_b_minimum=T_b_minimum-273.15;// °C printf('\n(a)The quality in the container when the contents are at 20.0°C,x_1=%0.3f percentage \n(b)The quality in the container when the contents are at 95.0°C,x_2=%2.1f percentage \n(c)The heat transport of energy required to raise the temperature of the contents from 20.0 to 95.0°C,Q_12=%4.0f kJ/kg \n(d)The entropy production,S_P=%3.0f J/K \n The minimum boundary temperature,(T_b)minimum=%2.1f°C',x_1p,x_2p,Q_12,S_p_12,T_b_minimum);