// Example 19_5 clc;funcprot(0); // Given data T_1=30+273.15;// K T_2=T_1;// K dp=10.0;// kPa d=0.0100;// m rho=996;// kg/m^3 k_p=1.00*10^-12;// m^2 mu=891*10^-6;// kg/(s.m) dx=0.100;// m Q=15.0;// The isothermal energy transport rate in this system in J/s // Solution // (a) A=(%pi/4)*d^2;// m^2 m=-((rho*A*k_p)/mu)*((dp*10^3)/dx);// kg/s // (b) k_o=-(Q/A)/((-dp*10^3)/dx);// m^2/s // (c) S_i=Q/T_1;// J/(s.K) printf('\n(a)The thermomechanical mass flow rate between the vessels,m=%1.2e kg/s \n(b)The osmotic heat conductivity coefficient,k_o=%1.2f m^2/s \n(c)The isothermal entropy transport rate induced by the thermomechanical mass flow rate,S_i=%0.4f J/(s.K)',m,k_o,S_i);