// Example 18_3 clc;funcprot(0); // Given data T=273;// K m=3.35*10^-26;// kg k=1.38*10^-23;// J/(molecule.K) // Calculation // (a) The fraction having velocities greater than Vmp is given by Eq. (18.26) with x = Vmp/Vmp = 1.0 x=1.00;// The velocity ratio NV_mpbyN=1-erf(x)+((2/sqrt(%pi))*x*exp(-(x^2)));// The fraction of molecules whose velocities lie in the range from V to infinity // (b) x=sqrt(8/(2*%pi));// The velocity ratio NV_avgbyN=1-erf(x)+((2/sqrt(%pi))*x*exp(-(x^2)));// The fraction of molecules whose velocities lie in the range from V to infinity // (c) // x=V_rms/V_mp; x=sqrt(3/2);// The velocity ratio NV_rmsbyN=1-erf(x)+((2/sqrt(%pi))*x*exp(-(x^2)));// The fraction of molecules whose velocities lie in the range from V to infinity // (d) x=10.0;// The velocity ratio NVbyN=((2/sqrt(%pi))*x*exp(-(x^2)));// The fraction of molecules whose velocities lie in the range from V to infinity c=3.00*10^8;// m/s V_mp=sqrt((2*k*T)/m);// m/s x=c/V_mp;// The velocity ratio NcbyN=((2/sqrt(%pi))*x*exp(-(x^2)));// The fraction of molecules whose velocities lie in the range from c to infinity printf("\n(a)%2.2f percentage of the molecules have velocities faster than V_mp. \n(b)%2.2f percentage of the molecules have velocities faster than V_avg. \n(c)%2.2f percentage of the molecules have velocities faster than V_rms. \n(d)The fraction of molecules whose velocities lie in the range from c to infinity is %0.0f.",NV_mpbyN*100,NV_avgbyN*100,NV_rmsbyN*100,NcbyN*100);