// Example 14_3 clc;funcprot(0); // Given data T_H=20.0+273.15;// K T_L=-15.0+273.15;// K // Solution // (a) COP_Cr=T_L/(T_H-T_L);// COP of a reversed Carnot cycle // From Table C.9b in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, the thermodynamic data at the monitoring stations shown in the schematic are // Station 1 T_1=-15.0;// °C s_1=0.89973;// kJ/(kg.K) s_2s=s_1;// kJ/(kg.K) x_1=0.9395;// The quality of steam h_1=231.0;// kJ/kg s_f1=0.11075;// kJ/(kg.K) s_fg1=0.83977;// kJ/(kg.K) h_f1=27.33;// kJ/kg h_fg1=216.79;// kJ/kg // Station 2 T_2s=20.0;// °C x_2s=1.00;// The quality of steam h_2s=256.5;// kJ/kg s_2s=0.89973;// kJ/(kg.K) p_2s=909.9;// kPa // Station 3 T_3=20.0;// °C x_3=0.00;// The quality of steam h_3=68.67;// kJ/kg s_3=0.25899;// kJ/(kg.K) p_3=p_2s;// kPa // Station 4 T_4s=T_1;// °C s_4s=s_3;// kJ/(kg.K) x_4s=0.1765;// The quality of steam h_4s=65.6;// kJ/kg s_f4=0.11075;// kJ/(kg.K) s_fg4=0.83977;// kJ/(kg.K) h_f4=h_f1;// kJ/kg h_fg4=h_fg1;// kJ/kg x_1=(s_2s-s_f1)/s_fg1; h_1=h_f1+(x_1*h_fg1);// kJ/kg // where we have calculated x_4s=(s_3-s_f4)/s_fg4;// The quality of steam h_4s=h_f4+(x_4s*h_fg4);// kJ/kg Q_L=h_1-h_4s;// kJ/kg W_c=h_2s-h_1;// kJ/kg W_t=h_3-h_4s;// kJ/kg COP_et=Q_L/(W_c-W_t);// COP for isentropic vapour compressor cycle with expansion turbine // (c) // Station 4h T_4h=T_1;// °C h_4h=h_3;// kJ/kg x_4h=(h_4h-h_f4)/h_fg4;// The quality of steam s_4h=s_f4+(x_4h*s_fg4);// kJ/(kg.K) Q_L=h_1-h_4h;// kJ/kg W_c=h_2s-h_1;// kJ/kg COP_tv=Q_L/W_c;// COP for isentropic vapor-compression cycle with throttling valve printf("\n(a)COP_carnot refrigerator=%1.2f \n(b)COP_isentropic vapour compressor cycle with expansion turbine=%1.2f \n(c)COP_isentropic vapor-compression cycle with throttling valve=%1.2f",COP_Cr,COP_et,COP_tv);