// Example 13_4 clc;funcprot(0); // Given data D=40.0;// inch L=10.0;// ft stroke W_actual=1400;// hp n=36.0;// rpm n_s_p=0.650;// The isentropic efficiency of a pump n_s_pm=0.550;// The isentropic efficiency of an engine d_fw=30.0;// The diameter of the flywheel in ft w=56.0;/// tons // Calculation // (a) // Station 1-Engine inlet p_1=100.0;// psia x_1=1.00;// The quality of steam at Station 1 h_1=1187.8;// Btu/lbm s_1=1.6036;// Btu/lbm.R // Station 2s-Engine exit p_2s=14.7;// psia s_2s=s_1;// Btu/lbm.R s_f2=0.3122;// Btu/lbm.R s_fg2=1.4447;// Btu/lbm.R x_2s=(s_2s-s_f2)/s_fg2;// The quality of steam at Station 2s h_f2=180.1;// Btu/lbm h_fg2=970.4;// Btu/lbm h_2s=h_f2+(x_2s*h_fg2);// Btu/lbm // Station 3-Condenser exit p_3=p_2s;// psia x_3=0;// The quality of steam at Station 3 h_3=h_f2;// Btu/lbm v_3=0.01672;// ft^3/lbm // Station 4s-Boiler inlet p_4s=p_1;// psia // s_4s=s_3; n_T_max=((h_1-h_2s-(v_3*(p_4s-p_3)))*(144/118.16))/((h_1-h_3-(v_3*(p_4s-p_3)))*(144/118.16));// The maximum isentropic efficiency of the system n_T_max=n_T_max*100;// % // (b) n_T_Rankine=(((h_1-h_2s)*n_s_pm)-((v_3*(p_4s-p_3)/n_s_p)*(144/118.16)))/((h_1-h_3)-((v_3*(p_4s-p_3)/n_s_p)*(144/118.16)));// The isentropic efficiency of the Rankine system n_T_Rankine=n_T_Rankine*100;// % // (c) mdot=(W_actual*2545)/((h_1-h_2s)*n_s_pm);// lbm/h printf("\n(a)The maximum isentropic efficiency of the Rankine system,(n_T)_maximum Rankine=%2.1f percentage \n(b)The isentropic efficiency of the Rankine system,(n_T)_Rankine=%1.2f percentage \n(c)The mass flow rate of steam required,mdot=%5.0f lbm/h",n_T_max,n_T_Rankine,mdot);