// Example 13_3 clc;funcprot(0); // Given data Q_boiler=300;// W p_1=20.0;// psia p_2s=14.7;// psia T_L=671.67;// R T_H=687.67;// R // Solution // (a) n_T_Carnot=(1-(T_L/T_H))*100;// % W_net_Carnot=(n_T_Carnot/100)*Q_boiler;// watts // (b) // Station 1-Engine inlet p_1=20.0;// psia x_1=1.00;// The quality of steam at Station 1 h_1=1156.4;// Btu/lbm s_1=1.7322;// Btu/lbm.R // Station 2s-Engine exit p_2s=14.7;// psia s_2s=s_1;// Btu/lbm.R s_f2=0.3122;// Btu/lbm.R s_fg2=1.4447;// Btu/lbm.R x_2s=(s_2s-s_f2)/s_fg2;// The quality of steam at Station 2s h_f2=180.1;// Btu/lbm h_fg2=970.4;// Btu/lbm h_2s=h_f2+(x_2s*h_fg2);// Btu/lbm // Station 3-Condenser exit p_3=p_2s;// psia x_3=0;// The quality of steam at Station 3 h_3=h_f2;// Btu/lbm v_3=0.01672;/// ft^3/lbm // Station 4s-Boiler inlet p_4s=p_1;// psia // s_4s=s_3; n_T_max=((h_1-h_2s-(v_3*(p_4s-p_3)))*(144/118.16))/((h_1-h_3-(v_3*(p_4s-p_3)))*(144/118.16));// The isentropic efficiency of the system n_T_max=n_T_max*100;// % printf("\n(a)The Carnot cycle thermal efficiency,(n_T)_Carnot=%1.2f percentage \n The net power output of the engine,W_net=%1.2f watts \n(b)The isentropic efficiency of the Rankine cycle,n_T_max=%1.2f percentage",n_T_Carnot,W_net_Carnot,n_T_max);