// Example 13_13 clc;funcprot(0); // Given data V_inlet=0;// ft/s V_exh=1560;// ft/s m_exh=270;// lbm/s g_c=32.174;// lbm.ft/(lbf.s^2) p_1=190;// psia T_1=2060;// R p_2s=28.0;// psia T_2=1350;// R p_3=14.7;// psia T_3=520;// R p_4s=200;// psia T_4=1175;// R k=1.40;// The specific heat ratio // Calculation // 1.The engine’s static thrust is given directly by Eq. (13.29) as T=m_exh*(V_exh-V_inlet)/g_c;// lbf // 2a. T_4s=T_3*((p_4s/p_3)^((k-1)/k));// °F n_s=((T_4s-T_3)/(T_4-T_3))*100;// The compressor’s isentropic efficiency in % T_2s=T_1*(p_2s/p_1)^((k-1)/k);// R n_s_pm=((T_1-T_2)/(T_1-T_2s))*100;// % // 3a. n_T_Bc=((T_1-T_2s-(T_4s-T_3))/(T_1-T_4s))*100;// The Brayton cold ASC thermal efficiency in % n_T_B=((T_1-T_2-(T_4-T_3))/(T_1-T_4))*100;// The actual thermal efficiency of the engine in % // 2b. // By using Table C.16a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics p_r4=1.2147*(p_4s/p_3); T_4s=1084;// R T_4sF=624;// °F n_s_c=((T_4s-T_3)/(T_4-T_3))*100;// % p_r1=196.16; p_r2=p_r1*(p_2s/p_1); // By interpolation in Table C.16a, T_2s=1261-460;// °F T_2s=1261;// R n_s_pm2=((T_1-T_2)/(T_1-T_2s))*100;// % // 3b. // From Table C.16a, h_3=124;// Btu/lbm h_4s=262;// Btu/lbm h_1=521;// Btu/lbm h_2s=307;// Btu/lbm h_4=284.09;// Btu/lbm h_2=329.9;// Btu/lbm n_T_Bh=((h_1-h_2s-(h_4s-h_3))/(h_1-h_4s))*100;// % n_T_B2=((h_1-h_2-(h_4-h_3))/(h_1-h_4))*100;// % // 3c. n_T_max=(1-sqrt(T_3/T_1))*100;// The maximum work Brayton cold ASC thermal efficiency in % printf("\n(1)The engine’s static thrust is given directly,T=%5.0f lbf \n(2)(a)The compressor and turbine isentropic efficiencies for the Brayton cold air standard cycle,(n_s)_compressor=%2.1f percentage & (n_s)_pm=%2.1f percentage \n (b)The compressor and turbine isentropic efficiencies for the Brayton hot air standard cycle using the gas tables for air,(n_T)_Brayton hot ASC=%2.1f percentage & (n_T)_Brayton actual=%2.1f percentage \n(3)(a)The ASC and actual thermal efficiencies for the Brayton cold air standard cycle,(n_T)_Brayton cold ASC =%2.1f percentage & (n_T)__Brayton actual=%1.1f percentage \n (b)The Brayton hot air standard cycle using the gas tables for air,(n_T)_Brayton hot ASC =%2.1f percentage & (n_T)__Brayton actual=%1.1f percentage \n (c)The maximum work Brayton cold ASC thermal efficiency,(n_T)_max work=%2.1f percentage",T,n_s,n_s_pm,n_s_c,n_s_pm2,n_T_Bc,n_T_B,n_T_Bh,n_T_B2,n_T_max); // The answer provided in the text book is wrong