// Example 12_3 clc;funcprot(0); // Given data X_CO_2=9.51;// % X_H_2O=19.01;// % X_N_2=71.48;// % M_N_2=28.02;// kg/kgmole M_CO_2=44.01;// kg/kgmole M_H_2O=18.02;// kg/kgmole p_m=14.7;// psia // Calculation // (a) // For ideal gas behavior, Eq. (12.23) tells us that the mole fractions, volume fractions, and the pressure fractions are all the same, or Shi_CO_2=X_CO_2;// The volume fraction in % Shi_H_2O=X_H_2O;// The volume fraction in % Shi_N_2=X_N_2;// The volume fraction in % pi_CO_2=X_CO_2;// The pressure fraction in % pi_H_2O=X_H_2O;// The pressure fraction in % pi_N_2=X_N_2;// The pressure fraction in % M_m=(X_CO_2*M_CO_2)+(X_N_2*M_N_2)+(X_H_2O*M_H_2O);// The equivalent molecular mass of this ideal gas mixture in kg/kgmole w_CO_2=Shi_CO_2*(M_CO_2/M_m);// The mass fraction in % w_H_2O=Shi_H_2O*(M_H_2O/M_m);// The mass fraction in % w_N_2=Shi_N_2*(M_N_2/M_m);// The mass fraction in % // (b) p_H_2O=p_m*X_H_2O/100;// The partial pressure of the water vapor in the exhaust gas mixture in psia printf("\n(a)The volume fraction compostion of the mixture,Shi_CO_2=%1.2f percentage \n Shi_H_2O=%2.2f percentage \n Shi_N_2=%2.2f percentage \n(b)The partial pressure of the water vapor in the exhaust gas mixture,p_H2O=%1.2f psia",Shi_CO_2,Shi_H_2O,Shi_N_2,p_H_2O);