// Example 12_13 clc;funcprot(0); // Given data V_a1=2000;// ft^3/min T_DB1=50.0+459.67;// R phi_1=80.0/100;// The relative humidity V_a2=1000;// ft^3/min T_DB2=100.0+459.67;// R phi_2=40.0/100;// The relative humidity R_a=53.34;// ft.lbf/(lbm.R) p_m=14.7// lbf/in^2 // Calculation p_sat1=0.178;// psia p_w1=phi_1*p_sat1;// psia p_a1=p_m-p_w1;// lbf/in^2 v_a1=(R_a*T_DB1)/(p_a1*144);// ft^3/(lbm dry air) p_sat2=0.9503;// psia p_w2=phi_2*p_sat2;// psia p_a2=p_m-p_w2;// lbf/in^2 v_a2=(R_a*T_DB2)/(p_a2*144);// ft^3/(lbm dry air) m_a1=V_a1/v_a1;// lbmdry air/min m_a2=V_a2/v_a2;// lbmdry air/min m_a3=m_a1+m_a2;// lbmdry air/min // Then, from the psychrometric chart (Chart D.5), we find w_1=44/7000;// lbm water vapor/(lbm dry air) w_2=115/7000;// lbm water vapor/(lbm dry air) h_1=19;// Btu/(lbm dry air) h_2=42;// Btu/(lbm dry air) w_3=((m_a1/m_a3)*w_1)+((m_a2/m_a3)*w_2);// grains of water vapor/(lbm dry air) h_3=((m_a1/m_a3)*h_1)+((m_a2/m_a3)*h_2);// Btu/(lbm dry air) // From the point where the lines ω = 65.8 grains/(lbm dry air) = constant and h = 26 Btu/(lbm dry air) = constant intersect on the psychrometric chart, we can read from this chart that T_DB=63;// °F T_WB=59;// °F phi=75;// % T_DP=56;// °F printf("\nThe dry bulb temperature of the outlet mixture,T_DB=%2.0f°F \nThe relative humidity of the outlet mixture,phi=%2.0f percentage",T_DB,phi);