///Chapter 9 Law Of Thermodynamics ///Example 9.8 Page No:170 /// Find DeltaUab ///input data clc; clear; ///Data consistent with first law pf thermodynamics Qabcd=-22; //In KJ N=150; //In Cycles/min Qab=17580; //In KJ/min Qbc=0; Qcd=-3660; //In KJ/min Wab=-8160; //In KJ/min Wbc=4170; //In KJ/min DeltaUcd=-21630; //In KJ/min ///Calculation DeltaUab=Qab-Wab; //In KJ/min DeltaUbc=Qbc-Wbc; //In KJ/min Wcd=Qcd-DeltaUcd; //In KJ/min Qabcd1=-220*150; //In KJ/min Qda=((Qabcd1)-(Qab+Qbc+Qcd)); //In KJ/min Wda=((Qabcd1)-(Wab+Wbc+Wcd)); //In KJ/min DeltaUabcd=0; DeltaUda=((DeltaUabcd)-(DeltaUab+DeltaUbc+DeltaUcd)); //In KJ/min NWO=Qabcd1/60; //In KW ///Output printf('DeltaUab= %f Kj/min \n ',DeltaUab); printf('DeltaUbc= %f KJ/min \n ',DeltaUbc); printf('Wcd=%f KJ/min \n ',Wcd); printf('Qabcd1= %f KJ/min \n ',Qabcd1); printf('Qda= %f KJ/min \n ',Qda); printf('Wda= %f KJ/min \n ',Wda); printf('DeltaUabcd= %f KJ/min \n ',DeltaUabcd); printf('DeltaUda= %f KJ/min \n',DeltaUda); printf('NWO= %f Kw \n',NWO);