// A Textbook of Fluid Mecahnics and Hydraulic Machines - By R K Bansal // Chapter 4-Buoyancy and Floatation //// Problem 4.16 //Given Data Set in the Problem dens=1000 g=9.81 D=1 H=2 w=7.848*10^3 dens1=1030 //calculations //1) to show that it cannot float vertically function [f]=F(h) f=w-dens1*g*%pi/4*D^2*h endfunction h=1 h=fsolve(h,F) //distance of the centre of gravity G,from A is AG AB=h/2 AG=H/2 BG=AG-AB //now ,meta centric height is equal to I=%pi/64*D^4 Vol=%pi/4*D^2*h GM=I/Vol-BG mprintf("The meta centric height is at %f m \n",GM) if GM<0 then mprintf("Since M lies below G,Hence,The body cannot float vertically \n") else mprintf("Since M lies above G,Hence,The body can float vertically \n") end //2) T=poly(0,"T") F_d=w+T //equating the total downward force to weight of awter displaced h0=(F_d)/(dens1*g*%pi/4*D^2) AB=h0/2 //Combined CG due to weight of cylinder and the rension in the chain is AG=(w*H/2+T*0)/(w+T) BG=AG-AB //the metacentric height is GM I=%pi/64*D^4 function [g]=G(T) g=(%pi/64*D^4)/(%pi/4*D^2*(w+T)/(dens1*g*%pi/4*D^2))-((w*H/2+T*0)/(w+T))+((w+T)/2/(dens1*g*%pi/4*D^2)) endfunction T=1 T=fsolve(T,G) mprintf("The Force necessary in the chain to keep it vertical is minimum %f N \n",T)