// determine flow rate,theoretical head required power,pressure across the impeller clc b1=44 r1=21e-3 // mm B=11e-3 // mm r2=66e-3 //mm b2=5e-3//mm N=2500 //rpm h1=0 g=9.8 alpha=90 // degree D1=2 D2=2 u1=(2*%pi*N*r1)/60 gamm1=9800 p1=1000 mprintf('\n peripherial velocity at inlet u1=wR1 =%f m/s',u1) u2=(2*%pi*N*r2)/60 mprintf('\n peripherial velocity at exit u2= wR2=%f m/s',u2) V1=tand(b1)*u1 mprintf('\n V1f = %f m/s',V1) Q=%pi*2*r1*B*V1 mprintf('\n Q = %f m3/s',Q) V2f=Q/(2*%pi*r2*b2) mprintf('\n V2f =%f m/s',V2f) V2w=V2f/(tand(30)) mprintf('\n u2-V2w = %f ',V2w) v2w=u2-V2w mprintf('\n V2w = %f m/s',v2w) alpha2=atand(V2f/v2w) mprintf('\n alpha2 = %f degree',alpha2) v2=v2w/cosd(18.9) mprintf('\n V2= %f m/s',v2) H1=(u2*v2w)/g mprintf('\n H1 = %f m',H1) p=gamm1*Q*H1 mprintf('\n H1 = %f watt',p) P2=(p1*g*H1)-((p1/2)*(v2^2-V1^2)) mprintf('\n p2-p1 = %e Pa',P2) mprintf('\n p2-p1 = %f bar',P2/10^5)