//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi //chapter 7 //example 7.4 //edition 1 //publisher and place:Nelson Engineering clc; clear; V=480;//terminal voltage in volt p=6;//number of poles f=60;//frequency in hertz Tout=300;//constant load torque in Nm N1=1; N2=1; Prot=1e3;//rotational power in watt alpha=120;//trigerring angle in degree mprintf("\nTo find speed of the motor:") a=120;//constant value ns=(a*f)/p; n=ns*(1+((N1/N2)*cosd(alpha))); mprintf("\nThe speed of the motor is %f rpm",n) s=(ns-n)/ns; mprintf("\nTo compute current in DC link:") rps=n/60;//speed in rps omega=(2*%pi*rps); Pout=Tout*omega; Pd=Pout+Prot; K=(3*sqrt(2))/%pi; I=(Pd/(1-s))/(K*V); mprintf("\nThe current in DC link is %f A",I) mprintf("\nTo compute rotor rms current:") itr=sqrt(2/3);//solved integration value I2=itr*I; mprintf("\nThe rotor rms current is %f A",I2) mprintf("\nTo compute stator rms current:") I1=(N1/N2)*I2 mprintf("\nThe stator rms current is %f A",I1) mprintf("\nTo compute power returned to the source:") Pr=Pd; Pr=Pr*10^(-3); mprintf("\nThe power returned to the source is %f watt",Pr) mprintf("\nTo compute the losses when additional resistance is added:") Td=Pd/omega; rpss=ns/60;//speed in rps omegas=(2*%pi*rpss); Radd=(V^2*s)/(Td*omegas);//additional resistance added in ohm I2=sqrt(((s/(1-s))*(Pd/3))/Radd);//rotor current Padd=3*I2^2*Radd;//additional power loss Padd=Padd*10^(-3); mprintf("\nThe power losses when additional resistance added is %f watt",Padd)