//Caption:Find (a)excitation voltage (b)power developed due to feild excitation (c)power developed due to saliency of motor (d)total power developed (e)efficiency (f)max power //Exa:8.4 clc; clear; close; pf=0.8;//lagging theta=-acosd(pf); V_a=120;//in V X_d=2.7;//d-axis reactance (in ohms/phase) X_q=1.7;//q-axis reactances (in ohms/phase) I_a=40*(cosd(-36.87)+%i*sind(-36.87));//in Amperes E_a_dash=V_a-%i*(I_a*X_q);//in Volts delta=atand(imag(E_a_dash)/real(E_a_dash));//in degree alpha=polar(theta-delta);//in degree I_d=abs(I_a)*sind(alpha)*(cosd(-34.48-90)+%i*sind(-34.48-90)); E_a=E_a_dash-%i*I_d*(X_d-X_q); disp(abs(E_a),'(a) per-phase excitation voltage(in Volts)='); disp(atand(imag(E_a)/real(E_a)),'phase angle of excitation voltage (in degree)='); P_df=(3*V_a*abs(E_a)*sind(34.48))/X_d; disp(P_df,'(b) power developed due to feild excitation(in Watts)='); P_ds=((X_d-X_q)*sind(2*34.48)*3*V_a^2)/(2*X_d*X_q); disp(P_ds,'(c) power developed due to saliency of motor (in Watts)='); P_d=P_df+P_ds; disp(P_d,'(d) total power developed (in Watts)='); P_r=0.05*P_d;//rotational loss (in Watts) P_in=3*real(V_a*conj(I_a));//power input (in Watts) P_o=P_in-P_r;//power output (in Watts) Eff=(P_o/P_in)*100; disp(Eff,'(e) Efficiency (in %)='); //refer to eqn 8.24 A=(3*120*abs(E_a))/X_d; B=3*(X_d-X_q)*120^2/(2*X_d*X_q); P_dm=A*sind(63.4)+B*sind(2*63.4); disp(P_dm,'(f) maximum power developed (in Watts)=');