//Caption:Find the (a)induced emf in the armature winding (b)induced emf per coil (c)induced emf per turn (d)induced emf per conductor //Ex:5.3 clc; clear; close; C=24;//no. of coils N_c=18;//no. of turns per coil P=2;//no. of pole W_m=183.2;//angular velocity(in rad/sec) Z=2*C*N_c;//total armature conductors a=2;//no. of parallel paths L=0.2;//effective length of machine(in meter) r=0.1;//radius of armature(in meter) A_p=(2*%pi*r*L)/P;//actual pole area A_e=A_p*0.8;//effective pole area B=1;//flux density per pole(in Tesla) Phy=B*A_e;//effective flux per pole K_a=(Z*P)/(2*%pi*a);//machine constant E_a=K_a*Phy*W_m; disp(E_a,'(a) induced emf in armature winding (in Volts)='); E_coil=E_a/(C/a); disp(E_coil,'(b) induced emf per coil (in Volts)='); E_turn=E_coil/N_c; disp(E_turn,'(c) induced emf per turn (in Volts)='); E_cond=E_turn/2; disp(E_cond,'(d) induced emf per conductor (in Volts)=');