// SAMPLE PROBLEM 6/15 clc;funcprot(0); // Given data m_E=30;// kg m_D=40;// kg v_1=1.2;// m/s t_1=0;// s t_2=5;// s F=380;// N d=375/1000;// m k_o=250/1000;// m g=9.81;// m/s^2 // Calculation // [H_O1+(integral(t_2 to t_2))SigmaM_Odt=H_O2] // Integrating we get M=((((F*0.750)*t_2)-(((m_E+m_D)*g*d)*t_2))-(((F*0.750)*t_1)-(((m_E+m_D)*g*d)*t_1)));// N.m.s Ibar=(m_E)*k_o^2;// kg-m^2 omega_1=v_1/d;//rad/sec H_O1=-((m_E+m_D)*v_1*d)-(Ibar*(v_1/d));// N.m.s // H_O2=-(m_E+m_D*v_2*d)-(Ibar*(v_2/d)); // H_O2=11.72*omega_2; // Substituting into the momentum equation gives omega_2=(H_O1+M)/11.72;// N.m.s // [G_1+(integral(t_2 to t_2))SigmaFdt=G_2] m=m_E+m_D;// kg G_1=m*-(v_1);// (kg.m/s) G_2=m*(d*omega_2);// (kg.m/s) // Integrating // SigmaF=[T*(t_2)+(F*t_2)-(m*g*t_2)]-[T*(t_1)+(F*t_1)-(m*g*t_1)]; T=((G_2-G_1)-(((F*t_2)-(m*g*t_2))-((F*t_1)-(m*g*t_1))))/(t_2-t_1);// N printf("\nThe angular velocity,omega_2=%1.2f rad/s counter clockwise \nThe tension in the cable,T=%3.0f N",omega_2,T);