// SAMPLE PROBLEM 6/1 clc;funcprot(0); // Given data W=3220;// lb v=44;// m/s (30 mi/hr) s=200;// ft mu=0.8;// The effective coefficient of friction between the tires and the road g=32.2;// The acceleration due to gravity in ft/sec^2 d_G=24;// inch d_BG=60;// inch d_GA=60;// inch // Calculation abar=v^2/(2*s);// ft/sec^2 theta=atand(1/10);// degree W_h=W*cosd(theta);// lb W_v=W*sind(theta);// lb mabar=(W/g)*abar;// lb // SigmaF_x = m*abar_x F=mabar+W_v;// lb function[X]=reaction(y) X(1)=(y(1)+y(2)-W)-0; X(2)=((d_GA*y(1))+(F*d_G)-(y(2)*d_BG))-0; endfunction y=[1000,1000]; z=fsolve(y,reaction); N_1=z(1);// lb N_2=z(2);// lb FbyN_2=F/N_2; printf("\nThe friction force under the rear driving wheels,F=%3.0f lb \nThe normal force under each pair of wheels,N_1=%4.0f lb & N_2=%4.0f lb",F,N_1,N_2); // Alternative solution // SigmaM_A=m*abar*d // SigmaM_A=m*abar*d N_2=((mabar*d_G)+((d_GA*W_h)+(d_G*W_v)))/(d_BG+d_GA);// lb // SigmaM_B=m*abar*d; N_1=((W_h*d_BG)-(d_G*W_v)-(mabar*d_G))/(d_BG+d_GA);// lb printf("\nALTERNATIVE SOLUTION:The normal force under each pair of wheels,N_1=%4.0f lb & N_2=%4.0f lb",N_1,N_2);