// SAMPLE PROBLEM 5/1 clc;clear;funcprot(0); // Given data n_1=1800;// rev/min t_0=0;// s // alpha=4t; n_2=900;// rev/min // Calculation // (a) omega_1=(-2*%pi*n_1)/60;// rad/s // omega=-(60*%pi)+2t^2 omega_2=(-2*%pi*n_2)/60;// rad/s t=sqrt((omega_2-omega_1)/2);// s // (b) // The flywheel changes direction when its angular velocity is momentarily zero. Thus, t_b=sqrt((0-omega_1)/2);// s // (c) t_0=0;// s t_1=t_b;// s theta_1=integrate('omega_1+(2*t^2)','t',t_0,t_1);// rad N_1=abs(-theta_1/(2*%pi));// rev(clockwise) t_1=t_b;// s t_2=14;// s theta_2=integrate('omega_1+(2*t^2)','t',t_1,t_2);// rad N_2=theta_2/(2*%pi);// rev N=N_1+N_2;// rev printf("\n(a)The time required for the flywheel to reduce its clockwise angular speed,t=%1.2f s \n(b)The time required for the flywheel to reverse its direction of rotation,t=%1.2f s \n(c)The total number of revolutions,N=%3.0f rev",t,t_b,N);