// Example 2_7 clc;funcprot(0); // Given data a=3;// m/s^2 v_A=100;// km/h v_C=50;// km/h s=120;// m // Calculation v_A=v_A*(1000/3600);// The velocity in m/s v_C=v_C*(1000/3600);// The velocity in m/s a_t=(1/(2*s))*(v_C.^2-v_A.^2);// The acceleration in m/s^2 // (a) Condition at A. a_n=sqrt(a.^2-(a_t).^2);// The acceleration in m/s^2 rho_A=v_A.^2/a_n;// The radius of curvature at A in m // (b) Condition at B. a_n=0;// m/s^2 a_b=a_n+a_t;// The acceleration at the inflection point B in m/s^2 // (c) Condition at C. rho=150;// The radius of curvature of the hump at C in m a_n=v_C.^2/rho;// The normal acceleration in m/s^2 a=sqrt(a_n.^2+a_t.^2);// The total acceleration at C in m/s^2 printf("\n(a)The radius of curvature at A,rho=%3.0f m \n(b)The acceleration at the inflection point B,a=%1.2f m/s^2 \n(c)The total acceleration at C,a=%1.2f m/s^2",rho_A,a_b,a)