// Example 9_8 clc;funcprot(0); // Given data L=50;// Lengths of garden hose in ft D_A=3/4;// Diameter of hose A in inch D_B=1/2;// Diameter of hose B in inch p=40;// Pressure in the tank in psig nu=1.0*10^-6;// The kinematic viscosity in m/s^2 rho=1*10^3;// The density of water in kg/m^3 g=9.807;// The acceleration due to gravity in m/s^2 epsilon=0; // Calculation D_A=D_A*2.54*10^-2;// m D_B=D_B*2.54*10^-2;// m L=L*0.3048;// m deltah_l1=(p*6.895*10^3)/(rho*g);// m deltah_A1=10;// m deltah_B1=18.12;// m sqrtoffintoRe_D_A=((2*g*deltah_A1*D_A^3)/(((nu)^2)*L))^(1/2); Re_D_A=-2*sqrtoffintoRe_D_A*log10(2.51/(sqrtoffintoRe_D_A));// Reynolds number Q_A1=(%pi*D_A*nu*Re_D_A)/4;// The volume flow rate in m^3/s sqrtoffintoRe_D_B=((2*g*deltah_B1*D_B^3)/(((nu)^2)*L))^(1/2); Re_D_B=-2*sqrtoffintoRe_D_B*log10((2.51/(sqrtoffintoRe_D_B)));// Reynolds number Q_B1=(%pi*D_B*nu*Re_D_B)/4;// The volume flow rate in m^3/s V_A=(4*Q_A1)/(%pi*D_A^2);// m/s V_B=(4*Q_B1)/(%pi*D_B^2);// m/s // Assume deltah=SigmaK*((V^2)/(2*g)) deltah=((0.4*V_A^2)+(0.4*V_B^2))/(2*g);// m deltah_f=deltah_l1-deltah;// m // We decide to allocate this total to deltah_A2=2;// m deltah_B2=25.43;// m sqrtoffintoRe_D_A=((2*g*deltah_A2*D_A^3)/(((nu)^2)*L))^(1/2); Re_D_A=-2*sqrtoffintoRe_D_A*log10((2.51/(sqrtoffintoRe_D_A)));// Reynolds number Q_A2=(%pi*D_A*nu*Re_D_A)/4;// The volume flow rate in m^3/s sqrtoffintoRe_D_B=((2*g*deltah_B2*D_B^3)/(((nu)^2)*L))^(1/2); Re_D_B=-2*sqrtoffintoRe_D_B*log10((2.51/(sqrtoffintoRe_D_B)));// Reynolds number Q_B2=(%pi*D_B*nu*Re_D_B)/4;// The volume flow rate in m^3/s V_A=(4*Q_A2)/(%pi*D_A^2);// m/s V_B=(4*Q_B2)/(%pi*D_B^2);// m/s deltah_l2=((0.4*V_A^2)+(0.4*V_B^2))/(2*g);// m //Indicating the first and second guesses by '1' and '2' we find a third guess to be: deltah=deltah_A2-((Q_A2-Q_B2)*((deltah_A1-deltah_A2)/((Q_A1-Q_B1)-(Q_A2-Q_B2))));// m printf('\nThe flow rate through the hoses Q_A=%1.3e m^3/s;Q_B=%1.3e m^3/s;SigmaK(V^2/2g)=%0.4f m',Q_A2,Q_B2,deltah_l2); // The answer is vary due to roundoff error