clc //variable initialisation V=440 //Supply voltage in volts p=6 //number of poles f=50 //Supply frequency in Hz N1=970 //speed in rpm N2=750 //speed in rpm N3=850 //speed in rpm n=3.5//Turns Ratio R1=0.2 R2=0.15 X1=0.4 X2=0.4 aa1=170//Firing Angle aa2=140//Firing Angle s=0.3 //solution Ns=(120*f)/p a=-(s/cosd(aa1)) m=(n/a) s1=(Ns-N2)/Ns Vd1=(3*sqrt(6)*s1*(V/sqrt(3)))/(%pi*n) Vd2=(3*sqrt(6)*(V/sqrt(3)*cosd(aa2)))/(%pi*m) Vd2=-39.05//To avoid further computational errors assuming Vd2 Rs1=R1*((1/n)^(2)) R3=(R2*((1/n)^(2))) Rd=0 Id=(Vd1+Vd2)/(2*((s1*Rs1)+R3)+Rd) w=Ns*((2*%pi)/60) Td=(abs(Vd2)*Id/(s1*w)) s2=(Ns-N1)/N1 Tr=(3/w)*((((V/sqrt(3))^(2))*(R2/s2))/(R1+(R2/s2))^(2)+(s2)^(2)) s3=(Ns-N3)/Ns Vd3=(3*sqrt(6)*s3*(V/sqrt(3)))/(%pi*n) X=poly(0,'X')//X=-cos alpha 0==1769.4*X^2-884.02*X+51.5//Polynomial Eqn obtained X1=(884.02+sqrt((884.02^2)-4*1769.4*51.5))/(2*1769.4)//Roots of polynomial eqn X2=(884.02-sqrt((884.02^2)-4*1769.4*51.5))/(2*1769.4)//Roots of polynomial eqn a11=acosd(-X1) a22=acosd(-X2) printf('\n\n Turns Ratio of Transformer=%0.1f\n\n',m) printf('\n\n The Torqye for 750rpm=%0.1f N-m\n\n',Td) printf('\n\n Firing Angle 1=%0.1f\n\n',a11) printf('\n\n Firing Angle 2=%0.1f\n\n',a22) //The answers vary due to round off error