clc //variable initialisation Pout=37.3 //Motor Output In KW Vm=440 //Motor Input in volt F=50 //supply frequency in Hz I0=20 //NO Load Line Current Of Motor R1=0.1 //resistance of stator in ohm R2=0.15 //resistance of rotor in ohm X1=0.4 //reactance of Motor in ohm X2=0.44 //reactance of Motor in ohm S=0.03 //Slip Of Motor Ls=1250 //Stator Core Loses In Watt Lr=1000 //Rotational Losses In KW Ns=1500 // Synchronous Speed Of Motor //Solution Vph=Vm/sqrt(3) I2=Vph/((R1+(R2/S))+%i*(X1+X2)) I21=abs(I2) I21=49.1//rounding off to avoid computational error I0=1.78-(%i*19.9)//Taken in book for No load motor current I1=I0+I2 y=imag(I1) x=real(I1) phi=atand(y/x) pf=cosd(phi) P2=3*((I21)^2)*(R2/S) Tg=(9.55*P2)/Ns Pm=(1-S)*P2 Pout1=Pm+Lr Lcs=3*((I21)^2)*R1//Wrong value of I2 is taken in textbook Lcr=S*P2 Lt=Ls+Lr+Lcs+Lcr Pin=Lt+Pout1 n=Pout1/Pin printf('\n\n The input line Current=%0.1f Amp\n\n',I1) printf('\n\n The power factor=%0.1f lag\n\n',pf) printf('\n\n The Electromagnetic Torque Developed=%0.1f N-m\n\n',Tg) printf('\n\n The output=%0.1f Watts\n\n',Pm) printf('\n\n The efficiency of Motor=%0.1f\n\n',n) //The answers vary due to round off error