clc //variable Initialisation V=415//Voltage Input in Volts f=50//supply frequency in Hz P=4//No of Poles N1=1450//Rotor Speed in rpm N2=1290//Rotor Speed in rpm for case II R1=1.01 R2=0.69 X1=1.08 X2=1.60 Xm=36 Tl=42//Rated torque in N-m //Solution Vph=V/sqrt(3) Ns=120*f/P Ws=2*%pi*Ns/60 Wm=2*%pi*N1/60 K=Tl/(Wm^2) s=(Ns-N2)/Ns//Slip Wm2=Ws*(1-s) Tl=K*(Wm2^2)//Load Torque in N-m Tl2=Tl*Wm2//Torque in Synchronous Watts I2=sqrt((Tl2*s)/(3*R2*(1-s))) Z=R1+(R2/s)+(%i*(X1+X2))//Impedance at slip s V2=I2*abs(Z)//Voltage applied in Volts/Phase Im=V2/(%i*Xm) Im1=abs(Im) Ir=V2/Z//Rotor Current Is=Ir+Im//Stator Current a=atand(imag(Is)/real(Is)) Pin=3*V2*abs(Is)*cosd(a)//Input Power Smax=1/3//Smax is obtain theorotically I2max=Ws*sqrt(Smax)*(1-Smax)*sqrt(K*Ws/(3*R2)) Nr=Ns*(1-Smax)//Speed at maximum Current Wmax=2*%pi*Nr/60 T=3*(I2max^2)*R2*(1-Smax)/(Smax*Wmax)//Torque at maximum Current printf('\n\n The Load torque=%0.1f N-m\n\n',Tl) printf('\n\n The Rotor Current=%0.1f Amp\n\n',Ir) printf('\n\n The Stator Supply Voltage=%0.1f Volts\n\n',V2) printf('\n\n The Motor input current=%0.1f Amp\n\n',Is) printf('\n\n The Motor input power=%0.1f Watt\n\n',Pin)//The answer provided in the textbook is wrong printf('\n\n Maximum rotor Current=%0.1f Amp\n\n',I2max) printf('\n\n The speed at maximum current=%0.1f rad/sec\n\n',Wmax) printf('\n\n The torque at maximum current=%0.1f N-m\n\n',T)