clc //variable Initialisation Vm=240 //Terminal Voltage Of Motor In Volt F=50 //Supply Frequency Of Motor P=4 //Number Of Pole R1=0.25 //Resistance Of Motor in Ohm R2=0.60 //Resistance Of Motor in Ohm X1=0.36//Reactance in Ohm X2=0.36//Reactance in Ohm Xm=17.3//Reactance In Ohm Nr1=1400 //Speed Of Rotor In RPM Nr2=600 //Speed Of Rotor In RPM //Solution #Case=1 W=((2*%pi)/60)*(Nr1) Ns=(120*F)/(P) S1=(Ns-Nr1)/Ns S2=(Ns-Nr2)/Ns Zr=(R2/S1)+%i*(X2) Zs=R1+%i*(X1) Zt=Zr+Zs Zin=(%i*(Xm)*(Zt))/(%i*(Xm)+(Zt)) Tl=1.4*((10)^-3)*(W)^2 n=Nr1/60 I2=sqrt((S1*Tl*2*%pi*n)/(3*R2*(1-S1))) #Case=2 Zr1=(R2/S2)+%i*(X2) Zs1=R1+%i*(X1) Zt1=Zr1+Zs1 Zin1=(%i*(Xm)*(Zt1))/(%i*(Xm)+(Zt1)) W1=((2*%pi)/60)*(Nr2) Tl1=1.4*((10)^-3)*(W1)^2 n1=Nr2/60 I3=sqrt((S2*Tl1*2*%pi*n1)/(3*R2*(1-S2))) //Given base currents in Amp Ib1=17.55 Ib2=100.27 Ip1=I2/Ib1 Ip2=I3/Ib2 printf('\n\n The per unit rotor Current for case 1=%0.1f\n\n',Ip1) printf('\n\n The per unit rotor Current for case 2=%0.1f\n\n',Ip2)