clear //Given //We will divide this into three parts F = 8 //k - force applied d = 16 //inch -distance l_1 = 1 //in l_2 = 3 //in b_1 = 4 //in b_2 = 1 //in A_1 = l_1* b_1 //sq.in - area of part_1 y_1 = 0.5 //in com distance from ab A_2 =l_2*b_2 //sq.in - area of part_1 y_2 = 2.5 //in com distance from ab A_3 = l_2*b_2 //sq.in - area of part_1 y_3 = 2.5 //in com distance from ab y_net = (A_1*y_1 +A_2*y_2 + A_3*y_3)/(A_1+A_2+A_3) //in - The com of the whole system c_max = (4-y_net) //in - The maximum distace from com to end c_min = y_net //in - the minimum distance from com to end I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) //Parallel axis theorem I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2) I_3 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2) I_net = I_1 + I_2 + I_3 //in^4 - the total moment of inertia M_c = F*d*c_max stress_cmax = M_c/I_net //ksi - The maximum compressive stress M_t= F*d*c_min stress_tmax = M_t/I_net //ksi - The maximum tensile stress printf("\n The maximum tensile stress %0.3f ksi",stress_tmax ) printf("\n The maximum compressive stress %0.1f ksi",stress_cmax)