clear // M = 10 //KN.m - The moment applied I_max = 23.95*(10**6) //mm4 - I_z The moment of inertia I_min = 2.53*(10**6) //mm4 - I_y The moment of inertia o = 14.34 // degress the principle axis rotated //Coponents of M in Y,Z direction M_z = M*(10**6)*cos((%pi/180)*(o)) M_y = M*(10**6)*sin((%pi/180)*(o)) //tanb = I_z /I_y *tan14.34 b = atan((I_max*tan((%pi/180)*(o))/I_min )) B = (180/%pi)*(b) y_p = 122.9 // mm - principle axis Y cordinate z_p = -26.95 //mm - principle axis z cordinate stress_B = - M_z*y_p/I_max + M_y*z_p/I_min //MPa - Maximum tensile stress y_f = -65.97 // mm - principle axis Y cordinate z_f = 41.93 //mm - principle axis z cordinate stress_f = - M_z*y_f/I_max + M_y*z_f/I_min //MPa - Maximum compressive stress //location of nuetral axis To show these stresses are max and minimum //tanB = MzI_z + MzI_yz/MyI_y +M_YI_yz I_z = 22.64 *(10**6) //mm4 moment of inertia in Z direction I_y = 3.84 *(10**6) //mm4 moment of inertia in Y direction I_yz =5.14 *(10**6) //mm4 moment of inertia in YZ direction M_y = M //KN.m bending moment in Y dorection M_z = M //KN.m bending moment in Y dorection B = atan(( M_z*I_yz)/(M_z*I_y )) //(%pi/180)* location on neutral axis beta1 = (180/%pi)*(B) printf("\n By sketching the line with angle %0.1f degrees The farthest point associated with B and F",beta1)