clear //Given //Virtual loading Without f_d p_ab = -0.833 //lb The recorded virtual loading p_bc = + 0.833 //lb The recorded virtual loading F_ab = 2500 //lb F_bc = -2500 //lb l_ab = 60 //in - The length of the rod l_bc = 60 //in - The length of the rod A_ab = 0.15 //in2 the areaof ab A_bc = 0.25 //in2 the areaof bc E = 30*(10**6) //psi The youngs modulus of the material //Part_a e_a =p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E) //lb-in the deflection //With f_d p_bd = 1 //lb The recorded virtual loading F_bd = 1 //lb l_bd = 40 //in - The length of the rod A_bd = 0.1 //in2 the areaof ab e_a_1 =p_ab*p_ab*l_ab/(A_ab*E) + p_bc*p_bc*l_bc/(A_bc*E) +p_bd*p_bd*l_bd/(A_bd*E) //lb-in the deflection //Since the produced defelection should compensate the other one x_d = e_a/e_a_1 printf("\n The reaction force at D is %0.2f lb",-x_d) //Part - B e_b = -x_d*l_bd/(A_bd*E ) //in - The deflection of nodal point B printf("\n The deflection of nodal point B %0.4f in",e_b)