clear k = 24.0*(10**12) //N.sq.mm Flexure rigidity E = 200.0 //GPa - Youngs modulus of the string l = 5000.0 //mm - The length of the string C_A = 300.0 //sq.mm - crossection area P = 50.0 //KN - The force applies at the end a = 2000.0 //mm - The distance C-F x = 1//X - let it be a variable X y_d = x*(a**3)/(3*k) //Xmm The displacement at D, lets keep the variable in units part y_p = -P*(10**3)*(16*(a**3)-12*(a**3)+(a**3))/(k*6) //mm The displacement due to p e_rod = l/(C_A*E*(10**3)) //Xmm -deflection, The varible is in units e_rod X = y_p/(2*e_rod+y_d) // By equating deflections y_d_1 = X*(a**3)/(3*k) // the deflection of point D printf("\n The deflection of point D %0.2f mm",y_d_1)