// exa 9.13 Pg 274 clc;clear;close; // Given Data W=50;// kN lift=200;// mm gc=300;// mm (ground clearance) pb=16;// MPa mu=0.14;// coefficient of collar friction //Screw C-35 Sut=288;// MPa n=3;// factor of safety for screw // Nut : phosphor-bronze sigma_t=100;// MPa sigma_c=90;// MPa tau=80;// MPa n2=3;// factor of safety for nut sigma_ts=Sut/n;// MPa sigma_cs=Sut/n;// MPa tau_s=sigma_ts/2;// MPa // sigma_cs=4*W/(%pi*dc**2) dc= sqrt(4*W*10**3/(%pi*sigma_cs));// mm printf('\n Screw diameter - \n Core diameter, dc = %.2f mm. Use 30 mm',dc) dc=30;// mm (adopted for design) p=6;// mm (for normal series square threads) d=dc+p;//mm printf('\n outside diameter = %.f mm',d) dm=dc+p/2;// mm printf('\n mean diameter = %.1f mm',dm) t=p/2;// mm printf('\n thread thickness = %.1f mm',t) printf('\n Maximum tensile & shear tress in screw -') sigma_c=4*W*1000/%pi/dc**2;// MPa alfa=atand(p/(%pi*dm));// degree fi=atand(mu);// degree Tf=dm*W*10**3/2*tand(alfa+fi);// where TfByW = Tf/W tau=16*Tf/(%pi*dc**3);// MPa sigma12=(1/2)*(sigma_c+sqrt(sigma_c**2+4*tau**2));// MPa printf('\n Maximum tensile stress = %.1f MPa < %.f MPA. Hence design is safe.',sigma12,sigma_ts) tau_max=sqrt((sigma_c/2)**2+tau**2);// MPa printf('\n Maximum shear stress = %.2f MPa < %.f MPA. Hence design is safe.',tau_max,tau_s) printf('\n Height of nut-') n=W*10**3/(%pi/4)/pb/(d**2-dc**2);// no. of threads n= round(n);// no. of threads (rounding) h=n*p;// mm printf('\n h=%.f mm',h) printf('\n Check for stress in screw and nut') tau_screw=W*10**3/(%pi*n*dc*t);// MPa printf('\n shear stress in screw = %.2f MPa\',tau_screw) tau_nut=W*10**3/(%pi*n*d*t);// MPa printf('\n shear stress in nut = %.2f MPa',tau_nut) printf('\n These are within permissible limits. Hence design is safe.') printf('\n Nut collar size-') // %pi/4*(D1**2-d**2)*sigma_tn=W D1=sqrt(W*10**3/(%pi/4)/(50)+d**2);// mm printf('\n Inside diameter of collar = %.2f mm. Use D1=52 mm',D1) D1=52;//mm (adopted for design) // %pi/4*(D2**2-D1**2)*sigma_cn=W D2=sqrt(W*10**3/(%pi/4)/45+D1**2);// mm printf('\n Outside diameter of collar = %.1f mm. Use D2=65 mm',D2) D2=65;//mm (adopted for design) // %pi*D1*tc*tau_cn=W tau_cn=40;// MPa tc=W*10**3/(%pi*D1*tau_cn);// mm printf('\n thickness of nut = %.2f mm. Use tc=8 mm.',tc) tc=8;// mm (adopted for design) printf('\n Head Dimensions-') D3=1.75*d;// mm printf('\n Diameter of head on top of screw = %.2f mm. use D3=64 mm.',D3) D3=64;// mm (adopted for design) D4=D3/4;// mm printf('\n pin diameter in the cup = %.f mm',D4) printf('\n Torque required between cup and head-') Tc=mu*W*10**3/3*((D3**3-D4**3)/(D3**2-D4**2));// N.mm printf('\n Tc=%.f N.mm (acc. to uniform pressure theory)',Tc) T=Tf+Tc;// N.mm printf('\n Total Torque, T=%.f N.mm',T) F=300;// N (as a normal person can apply 100-300 N) l=T/F;//mm printf('\n length of lever = %.f mm. Use 1075 mm',l) M=F*l;// N.mm dl=(32*M/%pi/sigma12)**(1/3);// mm printf('\n Diameter of lever, dl=%.1f mm.',dl) H=2*dl;// mm printf('\n Height of head, H=%.f mm',H) printf('\n Check for screw in buckling-') L=lift+0.5*h;// mm K=dc/4;// mm C=0.25;// spring index sigma_y=288;// MPa Ac=%pi/4*dc**2;//mm.sq. Wcr=Ac*sigma_y*(1-(sigma_y/4/C/%pi**2/(200*10**3))*(L/K)**2)/1000;// kN printf('\n Buckling or critical load for screw, Wcr = %.f kN > 50kN',Wcr) printf('\n Hence design is safe.')