//Chapter 12: The Cylindrical Antenna and the Moment Method //Example 12-12.1 clc; //Variable Initialization N = 3 //Piecewise sinusoidal dipole modes (unitless) l = 1/10.0 //Dipole length (lambda) z11_exact = 0.4935 - 3454*%i //Exact impedance vector(ohm) z11_apprx = 0.4944 - 3426*%i //Approximate impedance vector(ohm) z12_exact = 0.4935 + 1753*%i //Exact impedance vector(ohm) z12_apprx = 0.4945 + 1576*%i //Approximate impedance vector(ohm) z13_exact = 0.4935 + 129.9*%i //Exact impedance vector(ohm) z13_apprx = 0.4885 + 132.2*%i //Approximate impedance vector(ohm) //Calculations N2 = N + 1 //Number of equal segments (unitless) d = l/4 //Length of each segment (lambda) Rmn = 20*(2*%pi*d)**2 //Real part of elements of Z-matrix, Zmn (VA) zmat_apprx=([z11_apprx+z13_apprx,z12_apprx;2*z12_apprx,z11_apprx])//matrix(unitless) vmat = ([0;1]) //Voltage matrix (unitless) [i1]=linsolve(zmat_apprx,vmat) //Current matrix (unitless) i1=i1*-1 i_ratio = i1(2)/i1(1) //Current ratio (unitless) zin = vmat(2)/i1(2) //Input impedance (ohm) zmat_exact =([z11_exact+z13_exact,z12_exact;2*z12_exact,z11_exact]) [i1_e] = linsolve(zmat_exact,vmat) //Current matrix (unitless) i1_e=i1_e*-1 i_ratio_exact = i1_e(2)/i1_e(1) //Current ratio (unitless) zin_exact = vmat(2)/i1_e(2) //Input impedance (ohm) //Result mprintf("The current ratio is %.2f+%.4f j",real(i_ratio),imag(i_ratio)) mprintf("\nThis is nearly equal to 1.9 indicating a nearly triangular current distribution") mprintf("\nThe input impedance is %.3f%.3fj ohm using approximate values", real(zin),imag(zin)) mprintf("\nThe input impedance is %.3f%.3fj ohm using exact values", real(zin_exact),imag(zin_exact))