// Problem no 4.4.8,Page No.97 clc;clear; close; F_C=150 //KN //Pt LOad at C w=300 //KN //u.v.l L=6 //m //Length of beam L_AE=1;L_DC=2;L_CB=1;L_CD=1 //m //Lengthof AE,DC,CB L_ED=3 //m //Length of ED L_Ed=2 //m L_dD=1 //m //Calculations //Let R_A & R_B be the reactions at A & B //R_A+R_B=450 //Taking Moment at A //M_A=0=R_B*L-F_C*(L_CD+L_ED+L_AE)-w*(2*3**-1*L_ED+L_AE) R_B=(F_C*(L_DC+L_ED+L_AE)+w*(2*3**-1*L_ED+L_AE))*L**-1 R_A=450-R_B //Shear Force Calculations //Shear Force at B V_B=R_B //Shear Force at C V_C1=R_B V_C2=R_B-F_C //Shear Force at D V_D=V_C2 //Shear Force at E V_E=V_D-w //Shear Force at A V_A=V_E //Pt of contraflexure //Let F be the pt and EF=x //Let w1 be the rate of Loading at D we get w1=w*2*3**-1 //The rate of Loading at distance x is200*x*3**-1 //V_F=0=-R_B+200*x*3**-1*x*2**-1 //After substituting values and simplifying further we get L_EF=(R_A*3*100**-1)**0.5 x=(R_A*3*100**-1)**0.5; //Bending Moment Calculations //Bending Moment at B M_B=0 //Bending Moment at C M_C=R_B*L_CB //Bending Moment at D M_D=R_B*(L_CB+L_DC)-F_C*L_DC //Bending Moment at E M_E=R_B*(L_CB+L_DC+L_ED)-F_C*(L_DC+L_ED)-w*L_Ed //Bending Moment at A M_A=0 //Bending Moment at F M_F=R_A*(L_AE+L_EF)-200*x*3**-1*x*2**-1*x*3**-1 L_FD=L_ED-L_EF //Result printf("The Shear Force and Bending Moment Diagrams are the results") //Plotting the Shear Force Diagram subplot(2,1,1) X1=[0,L_CB,L_CB,L_CB+L_CD,L_CB+L_CD+L_ED,L_CB+L_CD+L_ED+L_AE,L_CB+L_CD+L_ED+L_AE] Y1=[V_B,V_C1,V_C2,V_D,V_E,V_A,0] Z1=[0,0,0,0,0,0,0] plot(X1,Y1,X1,Z1) xlabel("Length x in m") ylabel("Shear Force in kN") title("the Shear Force Diagram") //Plotting the Bending Moment Diagram subplot(2,1,2) X2=[0,L_CB,L_CB+L_DC,L_FD+L_DC+L_CB,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE] Y2=[M_B,M_C,M_D,M_F,M_E,M_A] Z2=[0,0,0,0,0,0] plot(X2,Y2) xlabel("Length in m") ylabel("Bending Moment in kN.m") title("the Bending Moment Diagram")