// Problem no 4.4.7,Page No.96 clc;clear; close; w=20 //KN/m //u.d.l on Length CB F_D= 50 //KN //Pt Load at D L_CB=5 //m //Length of CB L_DC=3 //M //Length of DC L_AD=2 //m //Length of AD L=10 //m //Length of Beam //Calculations theta=atan(4*3**-1)*(180*%pi**-1) F_DV=F_D*sin(theta*%pi*180**-1) //Force at Pt D vertically F_DH=F_D*cos(theta*%pi*180**-1) //Force at pt D horizontally //Let R_A & R_B be the reactions at A & B //R_A+R_B=140 //Taking Moment at A //M_A=0=-R_B*L+w*L_CB*(L_CB*2**-1+L_DC+L_AD)+F_DV*L_AD R_B=(w*L_CB*(L_CB*2**-1+L_DC+L_AD)+F_DV*L_AD)*L**-1 R_A=140-R_B //Shear Force Calculations //Shear Force at B V_B=R_B //Shear Force at C V_C=V_B-w*L_CB //Shear Force at D V_D1=V_C V_D2=V_C-F_DV //Shear Force at A V_A=V_D2 //Pt of Contraflexure //Let E be the pt And BE=x //V_E=0=R_B-w*x x=R_B*w**-1; L_BE=R_B*w**-1 //Bending Moment Calculations //Bending Moment at B M_B=0 //Bending Moment at C M_C=R_B*L_CB-w*L_CB**2*2**-1 //Bending Moment at D M_D=R_B*(L_CB+L_DC)-w*L_CB*(L_CB*2**-1+L_DC) //Bending Moment at A M_A=R_B*L-w*L_CB*(L_CB*2**-1+L_DC+L_AD)-F_DV*L_AD //Bending Moment at E M_E=R_B*L_BE-w*L_BE**2*2**-1 //Result printf("The Shear Force and Bending Moment Diagrams are the results") //Plotting the Shear Force Diagram subplot(2,1,1) X1=[0,L_CB,L_CB+L_DC,L_CB+L_DC,L_CB+L_DC+L_AD] Y1=[V_B,V_C,V_D1,V_D2,V_A] Z1=[0,0,0,0,0] plot(X1,Y1,X1,Z1) xlabel("Length x in m") ylabel("Shear Force in kN") title("the Shear Force Diagram") //Plotting the Bending Moment Diagram subplot(2,1,2) X2=[0,L_BE,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD] Y2=[M_B,M_E,M_C,M_D,M_A] Z2=[0,0,0,0,0,0] plot(X2,Y2) xlabel("Length in m") ylabel("Bending Moment in kN.m") title("the Bending Moment Diagram")