// Problem no 4.4.6,Page No.95 clc;clear; close; F_C=100 //KN //Pt Load at C F_E=50 //KN //Pt Load at E w=20 //KN/m L_AE=2;L_ED=2;L_DC=2;L_CB=2 //m //Length of AE,ED,DC,CB respectively L=8 //m //Length of Beam //Calculations //Let R_A & R_B be the reactions at A & B //R_A+R_B=190 //Taking Moment at A //M_A=-R_B*L+F_C*(3*L_AE)+w*L_DC*(L_DC*2**-1+2*L_ED)+F_E*L_AE=0 R_B=(F_C*(3*L_AE)+w*L_DC*(L_DC*2**-1+2*L_ED)+F_E*L_AE)*L**-1 R_A=190-R_B //Shear Force Calculations //Shear Force at B V_B=R_B //Shear Force at C V_C1=R_B V_C2=R_B-F_C //Shear Force at D V_D=V_C2-w*L_DC //Shear Force at E V_E1=V_D V_E2=V_D-F_E //Shear Force at A V_A=V_E2 //Point of contraflexure //Let F be the point BF=x //Shear Force at F //V_F=R_B-F_C-w*(L_BF-L_CB) L_FB=-((-R_B+F_C)*w**-1-L_CB) V_F=0 //Bending Moment Calculations //Bending Moment at B M_B=0 //Bending Moment at C M_C=R_B*L_CB //Bending Moment at D M_D=R_B*(L_CB+L_DC)-F_C*L_DC-w*L_DC**2*2**-1 //Bending Moment at E M_E=R_B*(L_CB+L_DC+L_ED)-F_C*(L_ED+L_DC)-w*L_DC*(L_DC*2**-1+L_ED) //Bending Moment at A M_A=R_B*(L_ED+L_DC+L_AE+L_CB)-F_C*(L_ED+L_DC+L_AE)-w*L_DC*(L_DC*2**-1+L_ED+L_AE)-F_E*L_AE //Bending Moment at F L_FC=L_CB-L_CB M_F=R_B*L_FB-F_C*L_FC-w*L_FC**2*2**-1 L_DF=L_DC-L_FC //Result printf("The Shear Force and Bending Moment Diagrams are the results") //Plotting the Shear Force Diagram subplot(2,1,1) X1=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED+L_AE] Y1=[V_B,V_C1,V_C2,V_D,V_E1,V_E2,V_A] Z1=[0,0,0,0,0,0,0,] plot(X1,Y1,X1,Z1) xlabel("Length x in m") ylabel("Shear Force in kN") title("the Shear Force Diagram") //Plotting the Bending Moment Diagram subplot(2,1,2) X2=[0,L_CB,L_CB+L_FC,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_ED] Y2=[M_B,M_C,M_F,M_D,M_E,M_A] Z2=[0,0,0,0,0,0] plot(X2,Y2) xlabel("Length in m") ylabel("Bending Moment in kN.m") title("the Bending Moment Diagram")