// Problem no 4.4.5,Page No.93 clc;clear; close; w1=30 //KN/m //u.d.l on L_CB F_C=120 //KN //Pt Load at C w2=50 //KN/m //u.d.l on L_AD L_DC=2;L_CB=2 //m //Length of DC and CB respectively L_AD=4 //m //Length of AD L_AB=8;L=8 //m //Length of beam //Calculations //Let R_A & R_B be the reactions at A & B //R_A+R_B=380 //Taking Moment at A //M_A=-R_B*L+F_C(L_DC+L_AD)+w1*L_CB*(L_CB*2**-1+L_DC+L_AD)+w2*L_AD**2*2**-1=0 //After Rearranging the terms we get R_B=(F_C*(L_DC+L_AD)+w1*L_CB*(L_CB*2**-1+L_DC+L_AD)+w2*L_AD**2*2**-1)*L**-1 R_A=380-R_B //Shear Force Calculations //Shear Force at B V_B=R_B //Shear Force at C V_C1=-w1*L_CB+R_B V_C2=R_B-w1*L_CB-F_C //Shear Force at D V_D=V_C2 //Shear Force at A V_A=V_D-w2*L_AD //Point of contraflexure //Let E be the point EB=x //Shear Force at E //V_E=0=R_B-F_C-w1*L_CB-w2*(L_EB-L_DC-L_CB) L_EB=-((-R_B+F_C+w1*L_CB)*w2**-1-L_DC-L_CB) V_E=0 //Bending Moment Calculations //Bending Moment at B M_B=0 //Bending Moment at C M_C=R_B*L_CB-w1*L_CB**2*2**-1 //Bending Moment at D M_D=R_B*(L_CB+L_DC)-w1*L_CB*(L_CB*2**-1+L_DC)-F_C*L_DC //Bending Moment at A M_A=0 //Bending Moment at E L_ED=L_EB-(L_DC+L_CB) //m //Length of ED M_E=-w1*L_CB*(L_ED+L_DC+L_CB*2**-1)-F_C*(L_DC+L_ED)+R_B*L_EB //Result printf("The Shear Force and Bending Moment Diagrams are the results") //Plotting the Shear Force Diagram subplot(2,1,2) X1=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD,L_CB+L_DC+L_AD] Y1=[V_B,V_C1,V_C2,V_D,V_A,0] Z1=[0,0,0,0,0,0] plot(X1,Y1,X1,Z1) xlabel("Length x in m") ylabel("Shear Force in kN") title("the Shear Force Diagram") //Plotting the Bending Moment Diagram subplot(2,1,1) X2=[0,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_AD] Y2=[M_B,M_C,M_D,M_E,M_A] Z2=[0,0,0,0,0] plot(X2,Y2) xlabel("Length in m") ylabel("Bending Moment in kN.m") title("the Bending Moment Diagram")