// Problem no 4.4.12,Page No.102 clc;clear; close; F_C=5 //KN //Pt Load at C F_D=4 //KN //Pt Load at D L_BC=1.25 //m //Length of BC L_DB=1 //m //Length of DB L_AD=3 //m //Length of AD w=2 //KN/m //u.d.l L=5.25 //m //Length of beam //Calculations //Let R_A & R_B be the reactions at A & B //R_A+R_B=15 //Taking Moment at A //M_A=0=F_C*L-R_B*(L_DB+L_AD)+F_D*L_AD+w*L_AD**2*2**-1 R_B=-(-F_C*L-F_D*L_AD-w*L_AD**2*2**-1)*(L_DB+L_AD)**-1 R_A=15-R_B //Shear Force Calculations //Shear Force at C V_C=-F_C //Shear Force at B V_B1=V_C V_B2=V_C+R_B //Shear Force at D V_D1=V_B2 V_D2=V_B2-F_D //Shear Force at A V_A=-(w*L_AD)-F_D-F_C+R_B //Pt of contraflexure //Let E be the pt and BE=x //V_E=0=-F_C+R_B-F_D-w*(L_BE-L_DB) L_BE=-((F_C-R_B+F_D)*w**-1-L_DB); x=L_BE; //Bending Moment Calculations //Bending Moment at C M_C=0 //Bending Moment at B M_B=-F_C*L_BC //Bending Moment at D M_D=-F_C*(L_DB+L_BC)-R_B*L_DB //Bending Moment at A M_A=-F_C*L+R_B*(L_DB+L_AD)-F_D*L_AD-w*L_AD**2*2**-1 //Bending Moment at E L_ED=L_BE-L_DB M_E=-F_C*(L_BC+L_BE)+R_B*L_BE-F_D*(L_BE-L_DB)-w*(L_BE-L_DB)**2*2**-1 //Result printf("The Shear Force and Bending Moment Diagrams are the results") //Plotting the Shear Force Diagram subplot(2,1,1) X1=[0,L_BC,L_BC,L_BC+L_DB,L_BC+L_DB,L_BC+L_DB+L_AD,L_BC+L_DB+L_AD] Y1=[V_C,V_B1,V_B2,V_D1,V_D2,V_A,0] Z1=[0,0,0,0,0,0,0] plot(X1,Y1,X1,Z1) xlabel("Length x in m") ylabel("Shear Force in kN") title("the Shear Force Diagram") //Plotting the Bending Moment Diagram subplot(2,1,2) X2=[0,L_BC,L_BC+L_DB,L_BC+L_DB+L_ED,L_BC+L_DB+L_AD] Y2=[M_C,M_B,M_D,M_E,M_A] Z2=[0,0,0,0,0] plot(X2,Y2,X2,Z2) xlabel("Length in m") ylabel("Bending Moment in kN.m") title("the Bending Moment Diagram")