disp("φs=χsi+Eg+(Ev-Ef)"); k=0.026; //say k=K*T/q p=7*10^14; Nv=3.08*10^19; a=4.05; //say a=χsi b=1.125; //say b=Eg c=k*log(p/Nv); //say c=Ev-Ef printf('\n The value of Ev-Ef is %fV',c); d=a+b+c; //say d=φs printf('\n The value of φs is %fV\n',d); disp("φms=φm-φs"); f=4.05; //say f=φm g=f-d; //say g=φms printf('\n The value of φms is %1.2fV\n',g); eox=3.9*8.854*10^-14; //say eox=Єox dox=200*10^-7; cox=eox/dox; printf('\n The oxide capacitance per unit area is %f*10^-8F/cm^2',cox*10^8); printf('\n The value of flat band voltage is %1.2fV\n',g); disp("Ld=sqrt(Є*Vt/(q*Na));"); e=11.7*8.854*10^-14; Vt=0.025852; q=1.6*10^-19; Na=7*10^14; Ld=sqrt(e*Vt/(q*Na)); printf('\n The value of Ld is %f*10^-5cm\n',Ld*10^5); esi=11.7*8.854*10^-14; Cfb=1/((dox/eox)+(Ld/esi)); printf('\n The capacitance per unit area at the flat band condition is %f*10^-8F/cm^2\n',Cfb*10^8); printf('\n The capacitance per unit area for deep accumulation of majority carriers Caccum=%f*10^-8F/cm^2',cox*10^8);