clc // Example 1.7.py // A flat plate with a chord length of 3 ft and an infinite span(perpendicular to // the page in fig 1.5) is immersed in a Mach 2 flow at standard sea level // conditions at an angle of attack of 10 degrees. The pressure distribution // over the plate is as follows: upper surface, p2=constant=1132 lb/ft^2 lower // surface, p3=constant=3568 lb/ft^2. The local shear stress is given by tau_w = // 13/xeta^0.2, where tau_w is in pounds per square feet and xeta is the distance // in feet along the plate from the leading edge. Assume the distribution of // tau_w over the top and bottom surfaces is the same. Both the pressure and // shear disributions are sketched qualitatively in fig. 1.5. Calculate the lift // and drag per unit span on the plate. // // Variable declaration M1 = 2.0 // mach number freestream p1 = 2116.0 // pressure at sea level (in lb/ft^2) l = 3.0 // chord of plate (in ft) alpha = 10.0 // angle of attack in degrees p2 = 1132.0 // pressure on the upper surface (in lb/ft^2) p3 = 3568.0 // pressure on the lower surface (in lb/ft^2) // Calculations // assuming unit span pds = -p2*l + p3*l // integral p.ds from leading edge to trailing edge (in lb/ft) L = pds*cos(alpha*%pi/180.0) // lift per unit span (in lb/ft), alpha is converted to radians Dw = pds*sin(alpha*%pi/180.0) // pressure drag per unit span (in lb/ft), alpha is converted to radians Df = 16.25 * (l** 4.0/5.0) // skin friction drag per unit span (in lb/ft) // from integral tau.d(xeta) Df = 2 * Df * cos(alpha*%pi/180.0) // since skin friction acts on both the side D = Df + Dw // total drag per unit span (in lb/ft) // Result printf("\n Total Lift per unit span = %.0f lb", L) printf("\n Total Drag per unit span = %.0f lb", D)