clc // // // Variable declaration M0=1500 // Couple of magnitude(kN) yA=50 // Distance() zA=74 Iy=(3.25*((10**-6))) // Moment of inertia(m**4) Iz=(4.18*((10**-6))) // Moment of inertia(m**4) Iyz=(2.87*((10**-6))) // Moment of inertia(m**4) // Calculation // Principal axes Theta=(80.8)/2.0 // Angle R=sqrt((0.465**2)+(2.87**2)) // Radius R=2.91*((10**-6)) // Converting to meter Iu=3.72-2.91 // Moment of inertia(m**4) Iv=3.72+2.91 // Moment of inertia(m**4) //Loading Mu=(M0*sin(40.4)) // Applied couple(N.m) Mv=(M0*cos(40.4)) // Applied couple(N.m) //Case(a) Stress at A uA=50*cos(40.4*((2*%pi)/360.0))+74*sin(40.4*((2*%pi)/360.0)) // Perpendicular distances(mm) vA=-50*sin(40.4*((2*%pi)/360.0))+74*cos(40.4*((2*%pi)/360.0)) // Perpendicular distances(mm) sA=((972*0.0239)/(0.810*((10**-6))) - ((1142)*(0.0860))/(6.63*(10**-6)))/((10**6)) // Stress at A(MPa) //Case(b) Neutral Axis phy=81.8 // Angle neutral axis with the v axis(degree) B=81.8-40.4 // Angle neutral axis with the horizontal axis(degree) // Result printf("\n Stress at point A = %0.3f MPa' ,sA) printf("\n The angle formed by the neutral axis and the horizontal is = %0.3f degree' ,B)