clc; P=10; f=50; Pm=48000; pf=0.8; f21=120; //min frequency range f22=300; //max frequency range Ns=(120*f)/P; //for f2=300 Nr1=((120*f21)/P)-Ns; //for f2=600 Nr2=((120*f22)/P)-Ns; mprintf('Thus the dc motor changes speed from %f to %f rpm \n',Nr1,Nr2) //for part b and c s1=(Nr1+Ns)/Ns; s2=(Nr2+Ns)/Ns; Pr=Pm/pf; Pr1=Pr/s1; Pr2=Pr/s2; R1=(s1-1)*Pr1*pf; R2=(s2-1)*Pr2*pf; T1=(R1*60)/(2*%pi*Nr1); T2=(R2*60)/(2*%pi*Nr2); // stator should be able to handle higher KVA mprintf('KVA rating of induction motor stator is %f KVA\n',Pr1/1000) mprintf('DC motor rating is %f KW \n Maximum torque output from DC motor is %f Nm \n',R2/1000,T1); //for part d //When speed is limited to 2700 rpm P1=((120*f22)-(120*f))/2700; P1=ceil(P1); mprintf('Number of Poles is %d \n',P1); //for part e Nr11=((f22*120)/P1)-((120*f)/P1); Nr22=((f21*120)/P1)-((120*f)/P1); mprintf('Thus the new speed range of dc motor is from %f to %f rpm \n',Nr22,Nr11);